
Fermi National Accelerator Laboratory 

A Survey on Macroscopic Quantum Phenomena in 
Superconductive Devices 

Luca Marinelli 

University of Geneva 
rtazy 

Fermi National Accelerator Laboratory 
P.O. Box 500, Batavia, Illinois 60510 

September 1993 

6 Operated by Universities Research Ass&Son Inc. under Contract No. DE-AOX-76CH03000 wiR the Untied Stales Deptbnnent of Enemy 



Disclaimer 

This report LULW prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof nor any of 
their employees, makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any information, 
apparatus, product, or process disclosed, or represents that its use would not infringe 
prioately owned rights. Reference herein to any specific commercial product, process, or 
seruice by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or any agency thereof: The views and opinions of authors expressed herein 
do not necessarily state or reflect those of the United States Government or any agency 
thereof. 



A survey on macroscopic quantum phenomena 
in superconductive devices 

Luca Marinelli 
University of Genova, Italy and 

Physics Department 
Fermi National Accelerator Laboratory, Batavia, IL 60510 

September 1, 1992 



Abstract 

This work originated from a summer spent studying some rudiments of the theory 
of superconductivity and some of its applications, as a summer student at Fermi 
National Accelerator Laboratory in Batavia, Illinois. This document is a report for 
my supervisor (Dr. Frank Nezrick) of my month and a half of work and I hope that it 
might be useful to some other student, at least as a list of a small pan of the existing 
bibliography on the subject. 

On the bibliography a comment should be made. Sometimes the original papers 
have been cited, but if I havent gone through them they have been put in a footnote, 
instead of being listed in the bibliography at the end of the document. 

The document starts with a basic review of Quantum Mechanics (Chapter l), 
where the results most often needed in the rest of the document have been stated. 
The main subject starts with Chapter 2, where the qualitative features of the theory 
of superconductivity (the so-called BCS theory) are analyzed and some of the basic 
equations that describe the characteristic phenomena of this theory are derived. In 
Chapter 3, the tunnel junctions play the major role, a semiconductor analog follow- 
ing [15] has been used, because it appears to me that the physics which is behind 
tunnelling comes out in a very natural way, without requiring me to learn all the math- 
ematical apparatus which is behind the mar&body theory of tunnelling. In Chapter 4 
I have described the Josephson junction, the Cooper pairs’ tunnelling mechanism and 
I have tried to sketch a few applications; unfortunately I didn’t have much time left 
to get deep into the devices. Some details or more mathematical topics which I, 
nonetheless, found interesting have been relegated to the Appendices. 

I would like to thank Dr. Frank Nezrick (Physics Section) for the opportunity he 
gave me to learn all these subjects, all new to me, and for his guidance and suggestions 
during this work. I am very grateful to Dr. Drasko Jovsnovic (Physics Section) and 
Dr. Chris Hill (Theoretical Physics) for the time they spent talking with me. Finally 
I would like to thank Lee Robbins of the Main Library staff, without whom it would 
have been almost impossible to obtain some of the bibliography. 
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Chapter 1 

Quantum mechanics: 
a brief review 

1.1 The time-dependent Schrcdinger equation 

In this chapter I would like to review, without even attempting to give any proof, the 
results of quantum mechanics that I will need in the rest of the paper. The reader who 
wants more details on some particular subject, should refer to his favourite quantum 
mechanics book. 

The equation of motion for a quantum mechanical system is the S&&finger 
equation, which states: 

i+q(r, t) = 
( 

-y&V’ + V(r) t) 
) 

*(r, t) = 7+IJ(r, t), (1.1) 

where fi is the Hamiltonian operator [1, Chapter 21. To setup the Schrodinger equa- 
tion for most systems it is enough to: 

l Write the classical Hamiltonian N(q,, . . , qR;plr.. . , pn; t) thus finding the cias- 
sical equation 

E=~H(gl,...,gR;pl,...,pR;t). 

. Perform the substitutions 

(1.2) 

a 
E-+&g 

ha 
p-7- 

2 aq, 
(r= 1,2 ,...( R), (1.3) 

on both sides of equation (1.2) and write down that these two quantities, con- 
sidered as operators, give the same result when acting on @. 

3 
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The equation thus obtained is the Schrtidinger equation for the quantum system [l, 
§II-151: 

a ihx*(q,, ,qR; t) = fi ha ha ql,. . . , qR; 7- ---;t 2 apI>"" i aqR Q(q ,,..., q&t). (1.4) 

Let’s consider, for example the case of a particle in an electro-magnetic field.The 
Lagrangian can be derived from a velocity-dependent potential and is found to be [2, 
§I-51 

L=T-qc$+qA.v, (1.5) 

where T is the kinetic energy. From (1.5) it is an easy step to write the Hamiltonian 
P, page 2221 

ff = &$P - qN* + qh (1.6) 

where p is the canonical momentum. Using the “rules” given above, the Schrodinger 
equation for the particle reads: 

ii&D= [~(+qA)ltq+‘. (1.7) 

For more details and further examples see [l, $11-141 

1.2 The time-independent SchrGdinger equation 

Let’s now assume that the Hamiltonian ?i does not depend on time. This is the case 
of a conservative system, i.e. a system whose total energy E is a constant of the 
motion. We look for a solution YI of the Schrodinger equation representing a state 
with well defined energy E = tW, so we look for solutions of the form: 

where $ depends upon the configuration coordinates but not upon the time. Substi- 
tution of this expression in the (1.4) leads to: 

ir$ = E$, (1.9) 

which is the time-independent Schrtidinger equation. We will call @ the wave function 
or the wave function of the stationary state, although the real wave function differs 
from ti for the phase factor exp(-iEt/fL)[l, pages 71-741. 
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1.3 The equation of continuity for probabilities 

An important part of the Schrtjdinger equation for a single particle is the idea that the 
probability of finding the particle somewhere is the absolute square of the wave func- 
tion (see for example [ 1, Chapter IV]). It is also characteristic of quantum mechanics 
that probability is conserved locally [3, 521-21, which means that if the likelihood 
of finding the particle somewhere increases while it decreases somewhere else, then 
something in between must be happening. This is usually expressed in a more math- 
ematical way stating that if the probability in a volume is changing, there must be a 
“flow” of something across the boundary of the volume. This “something is usually 
called a current even if it has nothing to do with the electric current. We can thus 
write an equation of continuity for the probability, 

v.J+g=o. (1.10) 

where P is just: 
P(r,t) = V(r,t)*(r,t). (1.11) 

It is not obvious from what we have said that such a current exists or what is its 
analytical expression, but I am not going to discuss this topic any further here; one 
way to do it can be found in [3, §21-21. I have worked out another way to find J 
using the invariance properties of the Lagrangian density for the Schrijdinger equation 
(Noether’s theorem), analogously to what is done in electromagnetism to show that 
the freedom in the choice of the gauge for the vector and scalar potential implies 
charge conservation, and you can read this in Appendix A. 
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Chapter 2 

The macroscopic wave function 

2.1 The superconducting state 

The electrical resistivity of many metals, alloys and some ceramics drops suddenly to 
zero if the specimen of the material is cooled to a sufhciently low temperature. This 
property was first observed by Kammerlingh Onnes in Leiden in 1911. This is not 
the only astonishing phenomenon occuring in superconductors, they have anomalous 
magnetic behaviour too. If placed in a weak magnetic field, a bulk superconductor 
will behave as a perfect diamagnet, shielding completely its interior from the magnetic 
induction. When a specimen is placed in a magnetic field and is then cooled through 
the transition temperature for superconductivity, the flux originally present is expelled 
from the specimen, this is called the Meissner e&ct. 

The temperature interval in which the resistivity change occurs is very narrow. 
We say that at a critical temperature T, the sample undergoes a phase transition 
from the normal to the superconducting state. There have been many attempts to 
place rdl of the above phenomenology in a theoretical framework but until 1957 the 
basic mechanisms that “build” superconductivity were not completely understood. 
In that year, in two papers’ J. Bardeen, L. N. Cooper and J. R. Schrieffer published 
what is now called the BCS theory of superconductivity. These papers explained the 
observed phenomenology without making any macroscopic assumption, i.e. building 
the theory from the microscopic interaction of the electrons in the lattice. 

2.2 The meaning of the wave function 

The statistical meaning of the wavefunction is well-known, but I would like to remind 
that the wave function 11, does not describe a smeared out particle. The particle is 

‘J. Bardem. L. N. Cooper and J. FL. Schrieffer, Phys. Rev. 106. 162 [ 1957); 108. 1175 (1957) 

7 



8 CHAPTER 2. THE hfACROSCOPIC WAVE FUNCTION 

either here or somewhere else. with different probabilities. but wherever it is, the whole 
particle is there. Thus an interpretation of the wave function as a charge density, for 
instance, in the case of a charged particle is completely out of question. 

Things change drastically when we consider a situation in which there are an 
enormous number of particles in exactly the same state, the probability of finding any 
one of them at a given place is Q*$. But due to the big number of particles, if I 
look in a volume element dxdy dz I will usually find a number of particles given by 
,V@+bdxdydz, where N is the total number of particles in the system. So in this 
situation, JV@@ can indeed be interpreted as the density of particles [3, 521-41. 

If all the particle constituting the system carry the same charge, then we can go 
a step further and use the product Np1c, to find the charge density. We know that 
the charge density is 

P = qN$V, (2.1) 

if Q is the charge of a single particle; unfortunately people don’t like writing too 
much, and so in the literature you will find the product v$ referred to as “the 
charge density”. We will adopt this notation too, from now on, writing the wave 
function as: 

&r, t) fZf mei’( (2.2) 

(I decided to put a tilde over $ to avoid any confusion between the wave function 
and this “modified wave function”) where p and 0 are functions of real variables, so 
that @q = p (any 4 can be written in this way, it is just like going from cartesian 
coordinates to polar coordinates on the plane). Under these assumptions the equation 
of continuity for probabilities becomes the familiar equation of charge conservation 
in electrodynamics 

aP V.J+z=O. (2.3) 

where J is now the electric current density and p(r,t) = @(r,t)G(r,t) is the elec- 
tric charge density. We have thus established a very tight relationship between the 
probability current and the electric current density on the sole basis that “the same 
equations have the same solutions”. 

The role of p in the wave function is clear, what about 0 ? Let’s see what happens 
when we substitute the equation (2.2) into the expression (A.ll) for the electric 
current density and express the result in terms of the new variables p and 0 13, 321-51: 

notice that J is indeed a real quantity being the average between a complex expression 
and its complex conjugate. The explicit calculation is done in Appendix B, and the 
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result is: 
J=zW;A)p. (2.5) 

This equation is independent from Maxwell equations and it will turn out that this is 
all we need to explain flux quantization and the Meissner effect in a superconductor 
even if, at this stage, it is not yet clear why it should describe the superconducting 
behaviour. 

Incidentally, the equation for the current can be analyzed a little nicer, when you 
think that the current density J is in fact the charge density times the velocity of the 
fluid of electrons. In fact this means that 

mv = AVB - qA, (2.6) 

which means that hV9 is just the canonical momentum in the electro-magnetic field. 

2.3 Brief insights in superconductivity 

2.3.1 The BCS theory: qualitative features 

Since now we have been developing the quantum mechanics of a system made of a 
big number of particles all described by the same wave function, but a theory of 
superconductivity should be based on the behaviour of electrons in the lattice and 
we know that electrons, being fermions, obey the Pauli exclusion principle, so they 
cannot be described by a macroscopic wave function. It seemed that there was no 
way of applying all the nice features we have seen until, with the pioneering works 
of H. Frolich first. who introduced the idea of electron-phonon-electron interaction as 
the source of superconductivity, and then L. Cooper, who advanced an idea on how 
a pairing mechanism could take place in the lattice provided there was an effective 
attractive potential (even very weak) so that bound pairs could arise at a sufficiently 
low temperature thus having the formation of units, later called “Cooper pairs”, of 0 
total spin and 0 total center of mass momentum, the final picture of superconductivity 
begun forming. The interaction roughly works like this: one electron interacts with 
the lattice and deforms it (creation of a phonon); a second electron sees the deformed 
lattice and adjusts itself to take advantage of the deformation to lower its energy 
(absorption of a phonon) 14, page 357). Thus the second electron interacts with the 
first one indirectly via the phonon field. This mechanism is characterized by a very 
small binding energy so that very low temperature have to be reached in order to see 
its effects. 

The pairs are not held together as a point particle, in fact the average distance 
between the two electrons forming the pair is some orders of magnitude bigger than 
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Figure 2.1: Many-Cooper pair problem: (a) incorrect and (b) correct picture, 

the average separation between the pairs. Thus within the region occupied by a single 
pair, will be found the centers of many (millions, or more) pairs [S, pages 739-743). 
This last argument suggests that Cooper pairs cannot be treated as independent 
particles. they are spatially interlocked in a very intricate manner, which is essential 
to the stability of the state (Figure 2.1). 

The &h&linger equation for a pair will be very similar to the one for a single 
charged particle in an electro-magnetic field: 

if&= [& (!‘I’-q*A)*+q*mj Q, (2.7) 

except from the fact that we will have to substitute Q with q’ = -2e for the charge 
of the pair (e is the modulus of the charge of the electron), and m with m’ which is 
an effective mass which takes care of the non-independence of Cooper pairs (just as 
it is done with semiconductors, m* is the mass of the “dressed” pair, i.e. it accounts 
for the interaction with the lattice and with the other pairs via a screened Coulomb 
interaction). We will not use directly this equation, but we will make a very large use 
of the (2.5), modified for Cooper pairs, which comes directly from the (2.7). Another 
important point is that we will not consider the effects of non-bound electrons, i.e. 
we will do every calculation in the zero temperature approximation. 
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Figure 2.2: An excitation of the normal system. 

2.3.2 The BCS ground state and the energy gap 

In a metal, in the free electron approximation, the ground state (state of lowest 
energy) is just the filled Fermi sea (4, Chapter 71 this can be pictured in momentum 
space as the filling of a Fermi sphere. In the ground-state wave function there is no 
correlation between electrons with opposite spin and only a statistical correlation- 
due to the Pauli exclusion principle-between electrons with the same spin. Single 
particle excitations are given by wave functions identical to the ground state except 
that one electron states with ki < kF are replaced with states kj > kp, leaving a 
vacancy below the Fermi surface and placing excited electrons above, as in Figure 2.2. 
The energy difference between the ground state and the excited states can be made 
arbitrarily small as there are many accessible states right outside the Fermi surface 
I% 

Coming to the superconducting ground-state, the recognition of the basic electron 
interaction mechanism doesn’t remove the major difficulty of the theory, namely that 
the correlation energy is so very much smaller than almost any other contribution to 
the total ground-state energy. A very drastic assumption has to be made, all interac- 
tions except the crucial one are the same for the normal and superconducting phase at 
0 K. Thus. taking as the zero energy the ground-state for the normal phase. the BCS 
theory proceeds to calculate the superconducting ground-state energy as being due 
only to the correlation between Cooper pairs and the screened Coulomb interaction 
[7, 511.41. Considering only the electrons in a narrow shell of Tw, thickness (w, is the 
frequency of a phonon that carries a momentum q, so Twq is the average energy of 
the lattice) around the Fermi energy as responsible for the pairing interaction. the 
effective potential can be written (measuring electron energies from the Fermi surface. 
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and calling Q the energy of an electron in the state k) 

def 
VkU = 

V for kkl, /WI 5 hw, 

0 elsewhere. 

The basic similarity of the superconducting characteristics of widely different metals 
implies that the responsible interaction cannot crucially depend on details of indi- 
vidual substances. In the BCS theory is therefore made the simplifying assumption 
that V& is isotropic and constant for all the electrons in the narrow shell. This 
simplification leads to virtually identical predictions for the magnitudes of all char- 
acteristic quantities in terms of reduced coordinates. Any empirical deviation from 
such complete similarity is, therefore, an indication of this oversimplification. 

The fundamental qualitative difference between the superconducting and normal 
ground-state wave function is produced when the large degeneracy of the single par- 
ticle electron levels in the normal state is removed [6, pages 281-2831 lowering the 
ground-state of degeneracy one by a finite amount under the excited states, thus 
making it very stable, creating a finite energy gap in the excitation spectrum (see 
Appendix C for the details of the mechanism). 

The energy gap is the most fundamental concept to understand the dynamics of 
superconductivity; it ensures the stability of persistent currents, the Meissner effect 
and it is crucial in tunnelling phenomena. 

Let’s see now, for example, how the energy gap can account for the stability of 
the supercurrents, i.e. the currents made of Cooper pairs. Consider a crystal lattice 
of mass M which contains an imperfection, such as a phonon or an impurity. Let 
the lattice flow vith velocity v relative to the electron gas. The relative velocity will 
decrease if excitations in the electron gas can be generated by collisions. If there is 
such a collision creating an excitation of energy Xk and momentum /ik, we must have 
the conservation of energy and momentum so, 

;,i’h2 = $‘f(d)2 + sik, 

Mv = Mv’ + iik. (2.10) 

If we combine these two equations we have 

h2k2 
O=fik.v+- 2M +‘h (2.11) 

If we now let M 4 cc we can neglect the second term in the right hand side. Thus 
the lowest value of v for which the equation xk = hk. (-v) can be satisfied is 

(2.12) 
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If there is an energy gap, Xk > 0 even for the lowest excitation. so also uc > 0. Thus 
superconducting currents can flow with velocities lower than uc without the risk of 
dissipation of energy by excitation of electrons from Cooper pairs via interaction with 
the lattice. This is also a partial expianation for the very poor heat conductivity in 
superconductors. 

We are now facing a new phenomenon, usually we have been thinking of an energy 
gap as preventing currents from flowing (if the valence and conduction bands of a 
material are separated by a finite gap whose thickness is much greater than kT, 
you rue dealing with an insulator), but now we are told that a superconductor is 
a perfect conductor because it has an energy gap! What’s happening ? There is a 
very important difference between the energy gap of an insulator, and the one in a 
superconductor, it is about the origin of the gap. In the insulator, the gap is tied 
to the lattice, it comes from the periodic disposition of positive ions in the crystal 
lattice so it is an essentially static gap, the electrons don’t affect it in any important 
way with all their wiggling around. In the superconductor, instead, the energy gap 
springs from the interactions that have been turned on inside the Fermi gas; it is thus 
an extremely dynamical parameter tied to the electrons. 

It is shown in [8, $10.91 that when a net current is flowing through a superconduc- 
tor, which means that the Cooper pairs instead of having total momentum 0 (ki = k, 
ks = -k), have total momentum fiQ (ki = k+Q, ks = -k+Q) (see Appendix C for 
more details on Cooper pairs), the energy gap shifts up as a whole by 2(tr2Q2/(2~)] 
(where m, is the mass of the electron). This is the reason why we have described the 
flow of the electron gas in the lattice in the (2.9) and (2.10), as seen by an observer 
tied to the electrons, instead of choosing the reference frame of the lattice: the energy 
gap looks always the same when it is viewed from the electrons’ reference frame. 

2.3.3 The Meissner effect 

Now we can start describing some of the phenomena of superconductivity. We have 
already given an explanation for the zero resistance behaviour in terms of the energy 
gap; we want to turn to magnetic properties now. 

It is clear that if supercurrents can flow without any dissipation, magnetic fields 
will not penetrate the material in the superconducting state. If, as you start the 
magnetic field, any of it built up in the superconductor, there would be a rate of 
change of the magnetic flux which would create an electric field which, by Lens’s law 
would oppose the field change. Since electrons can move without any resistance. an 
arbitrarily small electric field would produce just the right current to cancel exactly 
the magnetic flux change. So if you turn on the field after the sample has been cooled 
to the superconducting state. it will exclude the field. 

A more interesting phenomenon appears if you cool down the sample in a magnetic 
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field: as soon as the sample becomes superconducting the field is ezpekd, in other 
words it starts a current in just the right amount to screen itself completely from the 
external magnetic field. This time there is no rate of change of the magnetic flux, so 
classical electromagnetism fails in giving an expianation for what is happening inside 
the superconductor [3, §21-61. 

We can see the reason for this in the equations that we have already written 
down in a simple case. Let’s consider a long cylinder of superconductor in stationary 
conditions; we can write the equation of charge conservation es V. J, = 0, where J, 
is the superconducting current density, with the boundary condition J, . fi = 0 on the 
surface, where fi is the direction normal to the boundary and pointing towards the 
outside,which means that surface currents don’t “escape” from the superconductor. 
Now taking the divergence of equation (2.5) we find, supposing that p is constant 
throughout the superconductor (which is quite reasonable in ordinary conditions, 
otherwise there would be a terrific repulsion pushing the electrons apart): 

and choosing the Coulomb gauge, V. A = 0 we finally have the equation for 0 

v% = 0. (2.14) 

Let’s turn to the boundary conditions now, in our simple geometry let’s suppose to 
have a magnetic field parallel to the cylinder, the vector potential will then be as in 
Figure 2.2. It is thus evident that A ii = 0 and so we finally have the boundary 
value problem with Neumann conditions: 

VI9 = 0 
(Ve). ii = 0 at the surface. 

The solution for (2.15) is 0 = const. and so equation (2.5) becomes 

J=-Q'PA. * m* 

(2.15) 

(2.16) 

This equation is called the London equation and was originally proposed by H. London 
and F. London to explain the experimental observations, long before the quantum 
mechanical theory came forth. 

There is another interesting way to find the London equation, considering the 
quantum mechanical electric current (8, pages 268-2691 

J, = 

= +-[$Vq - (V&*4] - $A, 
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Figure 2.3: A long superconducting cylinder in an external magnetic field. 

where I have set @II, = p. If we have A = 0 it is reasonable to assume J, = 0 and so 
we get 

Js= & Id~V& - (v&)*&0] = 0. (2.18) 

When A # 0, $0 changes into $. If we suppose that 1c, = $0 then we find the London 
equation 

We see then that if li, is “rigid” in the sense that it doesn’t change too much when a 
magnetic field is applied then we get London equation. But why should li, be rigid ? 
From perturbation theory2 we have 

1L=h+C (nlRpertl0) 
,+ En - Eo 14, (2.20) 

where Ee is the ground-state energy and E,, is the energy of the excited state in). 
If there is a gap between the ground-state energy and the first excited state then, 
in a first approximation,, E, - Eo is large and $ Y ~a. We see that the energy 
gap can account for magnetic effects as well: this is just what happens in atoms. 

2You can find a chapter on perturbation theory on almost any book on quantum mechanics: I 
have looked at it on 191. 
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where magnetic fields produce only higher orders corrections to the ground-state 
wave function (Zeeman effect) exactly for the same reason. 

Let’s turn back to the Meissner effect, we can now use the London equation in 
the equations of electromagnetism to find: 

V’A = -hJ = @A = X2A. (2.21) 

We can try to solve this equation and see what happens. In one dimension it has 
solutions e’= and evX2. These solutions mean that the vector potential has to decrease 
exponentially going inside the superconductor (we don’t consider the solution eti 
because it diverges as z + co). If the piece of metal is large compared to i - O.lFm 
than the interior is completely free of field. We have thus explained the Meissner 
effect in this particularly simple geometry, for an analysis of the general case see 
Appendix D. 

2.3.4 Flux quantization 

If we consider now a ring or any multiply connected region instead of a lump, as 
we did before, whose thickness is much larger than $ and see what happens if we 
start a magnetic field, cwl down the metal to the superconducting state and turn 
off the magnetic field, even more dramatic effects take place. In the normal phase 
there will be a field in the body of the ring (Figure 2.4a), then as we cool it down the 
magnetic field is expelled from the material, but there will be some field in the hole 
(Figure 2.4b), and finally when we remove the magnetic field the lines o/field going 
fhmugh the hole are trapped (Figure 2.4~). This is because the flux @ inside the hole 
cannot decrease as [3, §21-71 

a@ -=- 
at E.dl=O. (2.22) 

So, as the field is removed a supercurrent starts flowing around the ring to keep the 
flux inside constant, but surprisingly enough the total flux trapped is quantized in 
integer multiples of 

@0 dsf $ % 2 x 10-7gausscm2, (2.23) 

where e is the electron charge. We can see why there is such a behaviour again 
starting from equation (2.5); well inside the body of the ring, the current density J, 
is zero, so we find 

hve = q’A. (2.24) 

Let’s now consider the line integral of both members of this equation around a closed 
loop which goes around the ring near the center of its cross-section, so that it is always 
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(a) (b) 

Figure 2.4: A ring in a magnetic field: (a) in the normal state; (b) in the supercon- 
ducting state; (c) after the external field is removed. 

distant enough from the surface 

h+L9.dl=q*~A~dl=g*@, (2.25) 

where G is the flux of the magnetic induction B through the hole. The line integral 
from one point to another is the difference of the vaiues of the function at the two 
points, but if we close the loop the line integral is not necessarily zero because the 
region is not simply connected. the oniy physical requirement we have is that r+6 has 
to be one valued, and this will happen if after one turn 0 has changed by an integer 
multiple of 2r (remember that 12 dsf fie’“), so we have 

2mA = q*@, (2.26) 

and thus: 
@=$%=nQ,, (2.27) 

which is just what we stated at the beginning. The trapped ,&LZ must be an integer 
times atL/e. So what happens is that a supercurrent will start in the ring to bring the 
trapped flux to the nearest integer times @, (thus the supercurrent will either build 
or destroy some trapped flux according to its value). 
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Chapter 3 

Tunnel junctions 

3.1 Introduction: the semiconductor model 

If the motion of a particle in the neighbourhood of a potential barrier is treated 
quantum mechanically, it is found that there is a finite probability that the particle 
can leak through the barrier even though its kinetic energy is less than the potential 
energy corresponding to the height of the barrier (for a simple introduction to the 
subject see (10, Chapter 41). In other words a particle impinging on the barrier will 
not necessarily be reflected, but may pass through the barrier and continue its forward 
motion. Tunnelling effects were found to be very important in many fields [ 11, pages 
34-381 already in the twenties and thirties, but superconductive tunnelling had to 
wait until 1960 to be discovered by Giaver’ and Nicol et a1.2. 

A tunnel junction connected by electrical leads to a tunable current source and a 
voltmeter is shown in Figure 3.1, the insulator width is usually around 50 A or less. 
Junctions provide the most direct measurement of the energy gap by the observation 
of the tunnelling of electrons between a superconducting film and a normal one (or 
between two superconducting films) across an insulating barrier. 

Considering tunnelling phenomena, it should be said that when a Cooper pair 
breaks into two “electrons”, they still aren’t free particles, they form single particle 
excitations of the BCS ground-state wave function, which nowadays are called quasi- 
particles, so they are characterized by effective parameters such as an effective mass 
and a lifetime (yes, electrons interacting among themselves and with the lattice have 
also a finite lifetime, which is very closely related to their interaction probability; for 
more details on this subject see [ 12]), analogously to what we have said about Copper 
pairs in 52.3.1. Thus to understand deeply what is going on in turmelling phenomena, 

!I. Giaever, Phys. Pm. Letters 5. 147 (1960); 5. 464 (1960). 
23. Nicol, S. Shapiro and P. H. Smith, Phys. Rev. Letters 5, 461 (1960) 
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Figure 3.1: Scheme of a tunnelling junction. 

the excitations should be studied in great detail and the excitation diagram should 
be found (for this appproach to tunnelling see [13] or [14, Chapter 21). A simpler way 
to do it, which is the way I followed, is to make an analogy to what is done with semi- 
conductors, this can be done because quasiparticles in the superconductivity theory, 
like electrons, are fermions and thus follow the Fermi-Dirac distribution [15, $1.121. 
This is a simplicistic view, but it gives the correct results and it is much clearer to 
me; the only modification needed is to account for the superconducting density of 
states at 0 K as given by the equation 

KG) = JVN(E) d&: 

where NM(E) is the normal metal density of states and E is the energy of a quasipar- 
ticle, measured relatively to the Fermi energy. It is shown in (14, 51.041 that NN(E) 
looks like 

NN(E) = & (F) fi, (3.2) 

(where m, is the electron mass) for a free electron mode1 of a metal. We shall make 
the very adequate assumption that the normal metal density of states is essentially 
constant over the energy range of interest (typically less then 0.1 eV compared with 
a Fermi energy of several electron volt). It is readily seen that there is a singularity 
in the density of states at &A. as measured from the Fermi energy. In Figure 3.2a 
the density of states for a superconductor at 0 K is shown. When the temperature is 
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5 
2A 

Figure 3.2: The density of states as a function of energy in the semiconductor rep- 
resentation. Note that the energy scale is very much distorted. The Fermi energy is 
by several orders of magnitude greater than the gap energy. (a) Xo excited states at 
zero temperature, (b) electrons above the gap at finite temperature. 

greater than 0 K, some of the electrons are found over the energy gap, as is shown in 
Figure 3.2b. These graphs show the density of states (on the z axis) as a function of 
the excitation energy (on the y axis), the filled states are the dashed ones. 

Let’s contider, for example, a metal-insulator-metal junction 115, $2.21. The 
energy required to remove a Fermi level electron from a metal is the work function 
e+, and the electrons removed from two different isolated metals can be considered 
to be at the same energy. As the metals are brought together or connected through 
a circuit, electrons are transferred from one to the other. thus creating a potential 
difference @r - @s sufficient to eliminate the energy difference between the two Fermi 
levels, in thermal equilibrium. as shown in Figure 3.3a. If a negative voltage -V is 

applied to the metal on the left-hand side3 we will have a net electron flux going from 
the left-hand side of the junction, to the right-hand side of the junction. in such a 
way that energy is conserved (which means that electrons don’t change their energy 
in the tunnelling process). The result for the tunnelling current is 

I = AN,(O)N,(O)eV, (3.3) 

where N,(O) and N?(O) are the densities of states on the left-hand side and on the 
right-hand side of the junction at the Fermi energy, A is a coefficient incorporating 
both the probability of transition across the barrier and the geometry of the junction 
and --e is the charge of the electron. So the result is that the reiation between the 
current and the voltage is linear: a metal-insulator-metal junction follows the Ohm’s 

3All the junctions treated here behave indipendently of the sign of the applied voltage, therefore 
we will always consider the sign in such a way that the net electron flow is from left to right. following 

1151. 
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(a) (b) 

Figure 3.3: Energy diagram for a metal-insulator-metal junction (a) at thermal equi- 
librium (b) when a potential difference V is applied. 

law for small values of V [15, 82.21. In what follows we will forget about the potential 
-V being negative and the charge of the electron being --e, instead we will suppose 
to multiply together the two minus signes in order to get rid of them. 

3.2 N-I-S junctions 

We want now to turn considering the basic phenomena of tunnelling which occur in 
a junction when one of the two electrodes is a superconductor and the other one is a 
normal metal (the two electrodes are, of course, separated by a thin insulating film), 
such a junction is usually denoted N-I-S or simply N-S. We already now how a metal 
and a superconductor look like in the semiconductor representation, both at zero and 
finite temperature, let’s try putting them together now. 

At absolute zero temperature all the states are filled up to Ep - A and there are 
no filled states above the gap, in the superconductor and up to E,v in the metal. In 
thermal equilibrium the Fermi energies must match (Figure 3.4a). When we apply a 
voltage V < A/e the electrons on the left don’t have access to empty states on the 
right and so there is no tunnelling current (Figure 3.4b) but when the voltage applied 
becomes greater than A/e, than there is a sudden onset of a current through the 
junction, not only because the energy of the electrons on the right is big enough to 
overcome the gap, but also because they face an enormous number of free states when 
they get to the superconductor side, as the density of states has a singularity at A. 
If we still increase the voltage, the first derivative of the I-V curve starts decreasing 
because the density of states on the right-hand side of the junction gets smaller at 
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Figure 3.4: The energy diagram of an N-I-S junction in the semiconductor represen- 
tation; (a) V = 0, (b) V > A/e, (c) the I-V characteristics at T = OK. 

Figure 3.5: (a) The energy diagram of an N-I-S junction at finite temperature in 
thermal equilibrium, (b) the I-V characteristics at finite temperature. 

higher energies (Figure 3.4~). 

When we go to finite temperatures. some of the electrons in the metal have a 
sufficient energy to tunnel into the superconductor, even with a zero applied voltage 
(Figure 3.5a). In the superconductor too some of the states above the energy gap 
are occupied. leaving empty levels below the gap, thus contributing even more to the 
tunnelling current. So a very small voltage is sufficient to start a current through the 
junction, but a much more appreciable rise in the current is again found only when 
the biasing voltage is V > A/e, as can be seen in the I-V characteristic in Figure 3.5b 
[15, 54.21. 
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Figure 3.6: The energy diagram of an S-I-S junction; (a) V = 0, (b) V = 2A/e. 
(c) the I-V characteristics at T = 0 K. 

3.3 Quasiparticle tunnelling in superconductors 

The next step is, of course, studying what happens when both sides of the junction 
are made of superconducting material (S-I-S junctions). We will first consider a 
junction between identical superconductors and then see what changes if the two su- 
perconductors are different, the parameter that must be accounted for the differences 
is, as we will see, the energy gap. 

3.3.1 Junctions between identical superconductors 

Let’s, first of all, consider a junction between two identical superconductors at zero 
temperature (Figure 3.6a shows the energy diagram in the semiconductor representa- 
tion). When no biasing voltage is applied to the junction, there is no current flowing, 
as all the energy levels are filled up to EF - A. The situation does not change as 
long as V < 2A/e because the the electrons below the gap on the left-hand side of 
the junction don’t have access to empty states on the right-hand side. At V = 2A/e 
there is a sudden rise in current because there is plenty of free states on the right 
above the gap where the electrons from the left can tunnel (Figure 3.6b). At higher 
biasing voltages, the corresponding number of empty states is smaller (just as with 
the N-I-S junction), and so the current-voltage characteristic is the one shown in Fig- 
ure 3.6~. When the temperature is different from absolute zero, there is an all overall 
rounding-off of the sharp features of Figure 3.6~ which, of course, is very strongly 
temperature dependant. A set of measurement on an Al-Al&-Al junction made by 
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Figure 3.7: The I-V characteristics of an Al-I-Al junction (subsequent curves are 
displaced for clarity). 

Blackford and March’ is shown in Figure 3.7; it shows the temperature dependence 
of the current-voltage characteristic. At 1.252K aluminum is in the normal state 
and the characteristic is linear, while at 1.241 K an effect of the energy gap is already 
visible 115, $4.31. 

3.3.2 Junctions between different superconductors 

At absolute zero temperature, the behaviour of the junction between two different 
superconductors is very similar to that of the junction between identical supercon- 
ductors. In fact, electrons can tunnel from one side to the other only when there 
is a high enough biasing voltage, this occurs when V = (Ai + As)/e, i.e. at twice 
the sritmetic mean between the two energy gaps (see Figure 3.8a). Thus, the I-V 
characteristics is very similar to that shown in Figure 3.6c, the only difference being 
the voltage at which there is the current onset, which is, for the junction between two 
different superconductors, (A, + As)/e (see Figure 3.8b) [15, 34.4). 

At finite temperature, we may still assume that the normal electron states above 
the larger gap are empty, but we cannot forget the thermally excited electrons in 
the smaller gap superconductor, as shown in Figure 3.9a for zero biasing voltage. 
Applying a voltage to the junction. will result in a rapidly increasing current because 
the thermally excited electrons on the left-hand side of the junction in Figure 3.9b can 

4B. L. Blackford and R. H. March, Can. J. Phys., 46. 141 (1968). 
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Figure 3.8: (a) Energy diagram and (b) I-V characteristics of an SI-I-S2 junction at 
T=OK. 

tunnel to the right-hand side, thus producing a current. But when V = (As-A,)/e is 
reached, all the thermally excited electron are facing empty states on the right-hand 
side of the junction, so a local weak maximum of the tunnelling current has been 
achieved. This maximum turns out to be a strong one, i.e. there exists a voltage 
range Y, containing VM = (As - Ai)/e, such that Z(V) < Z(VM) for every V E V, 
in fact the density of empty states decreases if we increase the voltage, so the total 
tunnelling current (which is proportional to the integral over the energy range in which 
electrons and empty states are simultaneously present of the product of the density 
of electrons. which is approximately constant in our case, the density of empty states, 
which is strongly dependent on the integration interval, and the tunnelling probability 
[15, 54.51) decreases, as is shown in Figure 3.9c. The decrease in current continues 
until V = (Ai +As)/e. At this point the electrons from below the gap of the left-hand 
side superconductor gain access to empty states on the right and this gives a very 
sudden increase in the current through the junction (Figure 3.9d). Thus the junction 
exhibits a negative resistance behaviour in the range 

A2-AI < v < A2+A, 

e e (3.4) 

If we apply even greater voltages to the junction, the voltage-current characteristic 
resembles very much the one for identical superconductors, as the differences in the 
energy gaps become negligible (Figure 3.9e). 
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Figure 3.9: The energy diagrams and I-V characteristics of an .?,-I-& junction at 
finite temperature; (a) V = 0, (b) V = (A, - A,)/e, (c) (A, - A,)/e < V < 
(A, + A,)/e, (d) V = (A, + A,)/e, (e) the I-V characteristics. 
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Figure 3.10: Effect of an incident photon on a tunnel junction: (a) a photon creates 
two electrons by breaking up a Cooper pair. (b) one of the electrons created tunnels 
across. 

3.4 Photon-assisted tunnelling 

We want to see now what happens if a tunnel junction is exposed to electromagnetic 
radiation, together with a biasing voltage, and see if the I-V characteristics is modified 
in any way by this [15, $5.21. 

First of all we will have to modify slightly the semiconductor-type diagram to 
account for the Cooper pairs, all condensed at the Fermi energy. The electron pairs 
will be represented by an empty circle. 

The tunnelling current may be modified by iiluminating the junction with electrc- 
magnetic waves. It is easy to see that if the photon energy is greater than 2Ai, 
they will break up Cooper pairs and create two electrons above the gap as shown in 
Figure 3.10a, which can then tunnel across the barrier, as their number excedes the 
equilibrium value (Figure 3.10b), creating an extra current. 

An influence on the tumrelling process is still possible then if the photon acts 
jointly with the applied voltage. Let’s consider the situation at absolute zero temper- 
ature for the sake of simplicity, and analyze the case when V = (Ai + A,)/e. Then 
a Cooper pair may break up into two electrons. one of them may tunnel across the 
barrier, as is shown in Figure 3.11. If V < (Ai+As)/e then there is no tunnelling cur- 
rent, because the electrons originating from a Cooper pair breaking up cannot tunnel 
as, for energy to be conserved, the electron leaking to the right hand side of the junc- 
tion should go below the energy gap, where, as we assumed to work at absolute zero 
temperature, there are no empty states (Figure 3.12a). However, if a photon of the 
right energy is available. then the tunnelling could take place through the mechanism 
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Figure 3.11: Excess tunnelling current in an SI-I-S1 junction due to the break up of 
a Cooper pair (V = (Ai + A,)/e). 

suggested in Figure 3.12b, where the electron can the reach the top of the energy 
gap adsorbing a photon, and we would refer to the phenomenon as photon-assisted 
tunnelling. The mathematical relation for the onset of tunnelling current is 

h = A, + A, - eV, (3.5) 

so that TuJ is just the missing energy to satisfy the energy conservation condition. If 
the energy of the photon is above this value, the tunneliing is still possible but it is 
less likely to happen, because the density of empty states at higher energy is smaller. 

Still another possibility is that the energy of the photon is below the value given 
in equation (3.5), in this case tunnelling is still possible, provided multi-photon ab- 
sorption processes are allowed. For example. referring to Figure 3.13a. an electron 
absorbing three photons simultaneously may tunnel across the barrier. Hence we may 
generalize equation (3.5) as follows 

nhu = A, + A2 - eV, (3.6) 

thus expecting sudden rise in the tunnelling current whenever photons of the right 
frequencies are present in the voltage range 0 < V < (A, + A,)/e. When V > 
(A, + A,)/e we know that a current will flow even in the absence of electro-magnetic 
radiation. but, if photons of the right frequency are available. they can assist the 
tunnelling, as shown in Figure 3.13b. The mechanism works more or less like this, a 
Cooper pair breaks up and one of the electrons goes into a state just above the energy 
gap on the left-hand side. The other electron wuld tunnel to the superconductor on 
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Figure 3.12: (a) Twmelling not allowed; (b) tunnelling allowed if assisted by a photon. 
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Figure 3.13: Tunnelling assisted (a) by absorption of three photons, (b) by emission 
of three photons. 
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the right weil above the energy gap, to conserve the total energy, thus going into a 
region with a low density of empty states. This process would occur with much higher 
probability if the electron could tunnel into a region with a high density of empty 
states. This can happen if it can emit some photons (in our case three) at the same 
time and, being the photons Bose particles’, the chance for this happening is greatly 
enhanced if there are many other photons with the same energy [3> chapter 41. Thus 
the mechanism for tunnelling current increase is photon emission stimulated by input 
photons and, for an n-photon emission process the current rises occur when 

K, = ;(A, + Aa + nhw). (3.7) 

The first experiments on tunnei junctions in the presence of electromagnetic waves 
were performed by Dayem and Martin%sing junctions between Al and In. The fre- 
quency of the electromagnetic waves employed was 38.83GHz so the experimental 
solution was to place the sample inside a cavity, the results are reported in Figure 3.14: 
were the rises in current at multiples of tw/e are clearly visible. 

5I found very useful. as an introduction to Bose particles 13, Chapter 41. 
6.4. Dayem and R. J. Martin, Phys. Rev. Letters 8. 246 (1962) 
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Figure 3.14: I-V characteristics of an Al-I-In junction in the absence (solid lines) 
and presence (dotted lines) of microwaves of frequency 38.83 GHz. 



Chapter 4 

The Josephson junction 

4.1 Cooper pair tunnelling 

The tunnelling processes discussed in chapter 2 involve the tunnelling of one or two 
quasiparticles from one side of the junction to the other. Josephson’, in 1962, pre- 
dicted additional tunnelling currents when both sides of the junction are supercon- 
ducting, due to the direct leakage of Cooper pairs from one side of the barrier to the 
other (Figure 4.1). Unlike quasiparticle tunnelling, pair tunnelling does not involve 
excitations and can occur even without bias across the junction. Thus one could 
connect a current source to a junction and, for currents less than a certain critical 
value. no voltage would be developed if the current were carried across the insulator 
by Cooper pairs [ 14, page 140). 

We will be talking of “barriers” or “insulators” throughout this chapter as we will 
deal mainly with Josephson oxide-barrier tunnel junctions. but we have to remember 
that there is a larger family of Josephson junctions which have as a common feature a 
weak connection between two superconducting regions; for example, a point contact 
junction is shown in Figure 4.2 (in one possible operating configuration). 

To understand the Josephson effect, we can consider two pieces of superconducting 
material, initially separated. The absolute values of the phases of the microscopic 
wave function, in each of the two pieces, are arbitrary, since they are unobservable. 
but the refa2iue values are fixed - in fact every Cooper pair in one piece must have 
the phase perfectly correlated with all the others. In fact, this statement is equivalent 
to the requirement for 0 total center of mass momentum for all Cooper pairs jn the 
BCS ground state. as we have seen at the end of section 2.2 (remember that hV0 is 
the canonical momentum in an electromagnetic field). The phases in the two pieces 
of superconducting material are uncorrelated, as long as they are kept separated (7. 

‘B. D. Josephson. Phys. Letters 1, 251 (1962). 
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Figure 4.1: .4 Cooper pair tunnels across the junction in the absence of a potential 
difference. 

Figure 4.2: A possible realization of a point contact junction. 
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§ll.ll]. Consider now the extreme opposite. i.e. a very thin barrier. as its thickness 
tends to zero we approach a situation in which there is no barrier at all. In the 
absence of a barrier the macroscopic wave function Y must change continuously from 
one point to the other. 

We see that as the barrier goes from very thick to very thin. the system loses one 
degree of freedom, corresponding to the ability of fixing arbitrarily the absolute value 
of the phase of $ on each of the sides of the barrier. as it has just been described. 
By what mechanism can this loss take place ? The free energy of the system contains 
a contribution from the barrier region which depends on the relative phases of the 
values of 12, on the two sides of the barrier, and whose magnitude becomes greater 
as the barrier is made thinner (see (161 for more details). With very thick barriers 
the free energy contribution from the barrier is negligible and the phases can vary 
independently. When the barrier is made thinner. however. this contribution grows 
bigger and bigger (diverging in the zero barrier mass limit) thus 6xing the phase 
relationship on the sides of the barrier. 

Hence a current of pairs will flow across the barrier so as to lock the phases as soon 
as the coupling energy becomes comparable to kT. This happens when the barrier 
is very thin (- 10 A) and was first observed by Anderson and Bowell*. Because the 
junction with such a thin barrier behaves like a single superconductor, Anderson has 
called this “weak” superconductivity. We shah see that pair tunnelling can also take 
place when there is a voltage; in that case the phases of the wave functions are not 
locked together but rather slip relative to each other at a rate that is precisely related 
to the voltage. 

4.2 The equations of the junction 

In order to analyze the behaviour of the junction in a more quantitative way we wili 
follow the “translation” that Feynman did of the Josephson effect in terms of coupled 
two-states systems [3, $21-91. 

We will call the amplitude to find the Cooper pair on the left-hand side of the 
junction li),, and the amplitude to find it on the right-hand side &. We will be 
considering, for the sake of simplicity, a junction between identical superconductors. 
The two amplitudes should then be related in the following way 

iha4t - = U,$ + KG,, 
at 

.g& -= 
at U& + KG,. 

‘P. 1%‘. Anderson and J. bf. Rowell. Phys. Rev. Letters 10. 230 (1963). 

(4.2) 
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The constant K is the energy term that expresses the correlation between the two 
sides of the junction. If K = 0 these two equations would just describe the ground 
states of the left and right-hand side of the junction. but if K # 0, then there is a 
iinite probability for a pair tunnelling from one side to the other. Let’s assume now 
that a voltage source is applied between the two sides of the junction; a difference of 
energy q’(Vz - Vi) = q*V is imposed between the two sides so that 

cJ2 - CJ, = q*V. (4.3) 

For convenience we can set the zero of energy, halfway between the energies Ui and 
Us, so that the coupled Scbrijdinger equations of the junction become 

iha4l q’V T - = -p, + K&r at 

iha q’V - -= 
at -,52 + K& 

Let’s now make the substitutions: 

(4.5) 

(4.6) 

where p and 0 have the same meaning we gave them in section 2.2. I wiil not go 
through the details of the algebra, I will just give the results, which can be obtained 
separating the imaginary and real parts of the equations, letting ~5 dzf 82 - 01: 

@I = +iK&sin8. 

6s = -iKmsin6. (4.8) 

(4.9) 

(4.10) 

From (4.7) and (4.8) we see that the rate of decrease of the pair density in one 
superconductor is the negative of that in the other. This rate of change represents 
only a tendency to change, as a real change would create a charge imbalance between 
the electrons and the background of positive ions. which in turn generates very strong 
restoring Coulomb forces. This imbalance is avoided by currents flowing in the circuit 
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connected to the junction 114, page 141). These Cooper pairs flowing from side 1 to 
side 2. create a current density J, directed from 2 to 1 whose magnitude is equal to 

J, = Tmsin6. (4.11) 

and from what we have said before, the product fi can be set equal to po. The 
other pair of equations (subtracting (4.9) from (4.10) and equating pi = pz) tells us 

&=2eV 
h ’ 

where we have used q’ = -2e. 
We have thus found the two fondamental equations for a Josephson junction 

J, = J, sin 6. (4, 

2) 

3) 

a6 2e x==v. (4.14) 

We will now use these equations to explain the experimentally observed effects men- 
tioned above. 

4.3 The Josephson effects 

4.3.1 The d.c. Josephson effect 

The equations derived in the previous section become considerably simpler for the 
time-independent case. giving rise to the so called d.c. Josephson e&t. It follows 
fmm equation (4.14) that if the reiative phase is independent of time then V = 0. 
Thus, if we have these two coupled superconductors, so that the phases are strongly 
correlated and constant over the whole junction (this is true if there aren’t magnetic 
fields, as we will see), we are left only with equation (4.13). This equation tells that if 
b # 0 (and there is no particular reason why 6 should be equal to zero), then there is a 
finite current flowing through the insulator, and this can happen without causing any 
voltage dmp. So. the insulator behaves just like a superconductor. From equation 
(4.13) follows also that J, is the maximum current that can go through the junction 
without having a voltage drop. So, for any value of J, below the critical current 
density J,, the phase difference between the two superconductors is determined by 
the external circuit (15, §lO.l]. 

Let’s now try to investigate what happens when the external circuit is made by an 
ideal current generator and we force a current density J, > J, through the junction. 
In the simplest case the voltage will jump from Josephson tunnelling characteristic to 
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Figure 4.3: The I-V characteristics of a Nb-I-Pb Josephson junction clearly showing 
the Josephson current at zero voltage. 

the normal S-I-S tunnel junction characteristic, as shown in Figure 4.3. The super- 
current, its maximum value, the transition from the Josephson junction characteristic 
to the normal S-I-S junction were observed for the first time by Anderson and Rowe11 
in the 1963 paper (cited in footnote 2), only nine months after Josephson’s original 
prediction. 

4.3.2 The a.c. Josephson effect 

The a.c. Josephson effect-es the name implies-is concerned with the temporal vari- 
ation of the phase across the junction. All the relevant properties can be inferred from 
equation (4.14), but we will just see an approximate solution to have some physical 
insights and will not bother about a more general treatment (the interested reader 
can Iind it in 115, 510.21). 

The simplest case is when a d.c. voltage V, is applied through the junction, in fact 
integration of (4.14) over the junction gives 

(4.15) 

If we substitute this equation in (4.13), and integrate the whole thing over the junc- 
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Figure 4.4: Dependence of the critical current I, on the Josephson frequency, the 
peak occurs where the applied d.c. voltage is 2A/e. 

bon’s cross section, we find 

I, = I,sin(zoJt + 6s), (4.16) 

and the frequency of the a.c. current is (Josephson frequency) 

f, %f 2 %f (&) zz&. (4.17) 

The coefficient in the last term is 483.6 x lO”Hz/V. It has aIso been shown that 
I, is frequency dependent. thus the amplitude of the oscillating current varies with 
frequency (the dependence is sketched in Figure 4.4 and it has been verified experi- 
mentally) and the result is that a substantial a.c. Cooper pair current flows even when 
the voltage (and thus the frequency) exceeds the gap by several times [14, page 1441. 

4.4 Effect of a magnetic field 

We have seen in Chapter 2 that the current Rowing through a superconductor is 
directly related to the vector potential via equation (2.5). If we require that equation 
to be gauge invariant under a vector potential gauge transformation (see [17, s6.51 
for a review on gauges and gauge transformations in electromagnetism), 

A -A++x> (4.18) 
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we find: 
(4.19) 

If we now consider the junction between the pieces of superconducting materials we 
have the two relations 

e1 - el - (WfQx1, 
e2 - e,- (20)x2. 

(4.20) 

We are now able to write a gauge invariant phase difference. Using (4.18) and (4.20) 
we find (remembering that ,f Vy . dl = ~2 - xi), 

8 dzf i& - 0, + ; J[’ A . dl. 

\Ve have thus found how a vector potential creates a shift in the phase difference. 
It is worth noting that in our equations. we always deal with the vector potential 

instead of the magnetic induction B. This isn’t a new fact as we know that quantum 
mechanics is sensitive to potentials (this is the Aharonov-Bohm effect, for an inter- 
esting discussion see (18, 915-51 or the original papers 119: 20]), the main idea behind 
this is that the behaviour of a quantum mechanical system is completely determined 
if we know its Hamiltonian, which is written in terns of the potentials, rather than 
the fields, as it represents the total energy of the system3 [14, s4.031. 

4.5 The general Josephson junction 

4.5.1 The shunted junction model 

Let’s now consider the most general Josephson junction and try to understand its 
behaviour. In section 4.2 we have derived the equations for an oxide-barrier tunnel 
junction and, in section 4.4, we have modified them to make them gauge invariant. 
upon integration over the junction surface they finally read 

I, = 1,sinJ: (4.22) 

ai 2e -= 
at xv. (4.23) 

It should be clear that these two equations describe only the current carried by 
electron pairs (that’s why I always put the “s” subscript), so we want to understand 

3This is not always true, if we consider a classical system whose constraints are time-dependent. 
the Hamiltonian does not represent anymore the total energy, at least in an mertiai frame (it might, 
for example. represent it in a rotating frame so that it would contain also some enera term coming 
from the inertial forces). 
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Figure 4.5: Equivalent circuit for a Josephson junction. 

which are the other contributions to the total current. To normal electrons, the oxide- 
barrier junction is very much like a capacitor, so in general displacement currents 
might be important. We have also seen that when V # 0 there is a quasiparticle 
tunnelling current in parallel to the other terms, and finally, if the oxide is not a 
perfect insulator there will also be a regular electron current 114, 55.021. 

We can thus draw an equivalent circuit for a general real Josephson junction, whose 
parameters will frx the type and characteristics of the junction. The equivalent circuit 
is shown in Figure 4.5, where we have drawn a generic voltage-dependent conductance 
G(V) to account for the quasiparticle tunnelling and the insulator leakage currents, 
and a capacitor for the displacement current. The voltage dependence G(V) can 
be found from the I-V characteristics of the junction and in general it will not be a 
simple dependence, so the solution of this equivalent circuit could be a very complicate 
numericai business. 

Let’s suppose, in a first and very crude approximation. that 

G(V) = G, (4.24) 

and let’s also assume that the circuit is driven via a d.c. current source (with infinite 
internal impedance). If there is no vector potential A in the circuit area4 then 6 is 
only a function of time and the equation of the circuit is 

I=I sin&+CV+CK. e 
dt 

(4.25) 

41f A = 0 everywhere in some tied gauge, then it will be equal to a gradient. in any other 
gauge, and this just displaces the phase of the WBV~ function. not creating any phy%cally observable 
difference [for example a current), thus preserving the gauge invariance of the equations. 
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Let’s replace the time variable with the adimensional variable T defined as 

def ‘k 1, 
7 = -f--t, (4.26) 

thus finding 

(4.27) 

where 
def 2e Ic c (4.28) 

Our aim is to iind the average value of the voltage 

(4.29) 

(where the angle brackets stand for the time average) with a given applied constant 
current I. The simplest case is the one with C = 0, so that 0, = 0, the equation of 
the circuit can be solved exactly and the result is 

‘(I) = I ;Ic,G)[(I,I~)= - 11”’ 
if I < I, 
if I 2 I,, 

(4.30) 

the solution is plotted in Figure 4.6, it is readily seen that the solution is one-valued 
everywhere. 

The situation becomes more complex when we consider & f 0. For I > 1, there 
is again one value of the voltage for each value of the current but for the range 
I,,,i,, 5 I 5 I, there are two values of the voltage, one at V = 0 and the other at 
V # 0 (Figure 4.7). If a source with & # 0 was connected to a d.c. source and the 
current raised from zero, the I-V characteristics would be traced out as shown by the 
arrows, clearly showing an hysteretic behaviour. 

Let’s try to see what happens as & + co, i.e. as the displacement current becomes 
the most important term in the equation of the circuit (4.27). The fact that & --* cc 
is equivalent to C - co, keeping G fixed. So for the displacement current to remain 
finite, we have 

I =& d dt ’ 
(4.31) 

so that we find 
dV 0 dt=. (4.32) 
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Figure 4.6: Normaiized I-V characteristics for a Josephson junction described by 
the equivalent circuit of Figure 4.5 for cases of negligible (0, = 0) and dominating 
(DC = ~0) capacitance. 
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Figure 4.7: Normalized I-V characteristics for a Josephson junction represented by 
the equivalent circuit of Figure 4.5 with PC = 4. 
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Figure 4.8: Equivalent circuit for a Josephson device connected to d.c. and a.c. voltage 
sources. 

This means that the term due to the electron pairs’ current shunted through the 
capacitance has 0 time average (it is just the a.c. Josephson effect) when V # 0, so 
the total current is just 

I=GV ifV#O. (4.33) 

Thus we have found also the second curve displayed in Figure 4.6. 
We note that the shape of the I-V characteristics for & = co is quite different 

from that given in Figure 4.3 for an oxide-barrier tunnel junction, even if we would 
expect them to be very similar. The reason for this difference is that t.he shunt 
conductance is far from constant. Far better results can be obtained substituting the 
I-V characteristics in equation (4.27) and solving numerically. 

4.5.2 An application: RF effects 

We want to investigate what happens when we drive a Josephson junction simultane- 
ously with both an a.~. and d.c. sources, which is the usual situation in RF detection. 
Typically the junction is connected to a d.c. bias source and the RF signal is impressed 
on the junction by placing it in a microwave waveguide or cavity 114, 85.05). 

We wi1 approximate this situation using a d.c. and an a.c. voltage sources with no 
internal impedance, as shown in Figure 4.8. Taking the voltage to be V + C’,coscj,t 
and using the shunted junction equivalent circuit with constant resistance R we can 
compute the Josephson current. using the relationships derived above 

sin@ + 601. (4.34) 
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If we assume that V, < V, we can follow [3, 21-9) writing 

sin(z + As) z sinz + Axcosx. (4.35) 

for Ax small compared to I, and using this approximation in the (4.34) 

2eV 
nt+& 2eK sinw tcos + z s (4.36) 

s 

The first term has zero time average, but the second can be written as 

’ sin 
1 ( 

w t - 2eV -t - 60 + sin 
> ( 

2eV 
z ’ h 

w,t + it + 60 >I , (4.37) 

and so its time average is different from zero only when 

so a current spike is found at this voltage. An exact calculation of the current as in 
[14, 5.051 gives 

I,(t) = L 5 (-l)nJn(F) sin[(wJ - nw,)t + 60], (4.39) 
*=-co 

where WJ dsf 2eV/h and J,(x) is the nth order Bessel function of the first kind. From 
this result we see that at values of the voltage 

there are current spikes in the I-V characteristics and they have a maximum height 
of I,J,[2eV/(hu,)], where the phase 60 = x/2. For each value of the d.c. voltage there 
is also a d.c. current through the resistance Io = V/R (Figure 4.8). 

Actual measurements do not reveal these spikes in the I-V characteristics, because 
the junctions usually have resistances low enough that the sources act more like 
current sources. As a result, increasing the d.c. current source from zero raises the 
operating point along a step-like locus as shown by the arrows in Figure 4.9. In 
Figure 4.10 are shown some experimental measurements with increasing RF power. 
the steps are clearly visible and (known w,) this is a very precise method to measure 
Qe d&f h/(2e), the quantum of flux. 
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Figure 4.9: I-V characteristics for the circuit of Figure 4.8. In the voltage-source 
model. spikes in the d.c. current occur at voltages V = &w,/(2e). Measurements 
are usually made with sources that do not have zero impedances: steps, rather than 
spikes. are observed (broken lines). 
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Nb-Nb 
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wl2n.72 GHz 

Figure 4.10: I-V characteristics of a Nb-Nb point contact junction taken by a high 
impedance source. 1: no microwave power. 2-16: microwave power increasing grad- 
ually by 26 db. 
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Figure 4.14: Total critical current and individual junction currents in a two-junction 
parallel symmetrical array with self-induced fields included. 

where Icirc = (l/2)(12 - I,) so that the currents flowing through the single junction 
are (1/2)Ir + Icirc and (l/2)1= - Icirc (because in one of the junctions both (l/2)1= 
and Icirc have the same direction, while in they other they have opposite directions 
[21, pages 34-351). Equation (4.46) can then be expressed 

a, = iL(Iz - II) = iL(sin& - sin&), (4.47) 

so that the total flux in the loop is 

Q = @, + Qat = aext + iLl,(sin& - sin&). (4.48) 

Solutions of this equation in terms of & and aext allows determination of the total 
flux, and, therefore, of the total current as functions of 6,. For each value of the 
applied flux aat, the current IQ- is maximized with respect to S,, and the result is 
shown in Figure 4.14. 

In Figure 4.15 is shown the total flux in the loop as a function of the applied flux 
aext. The deviation of this line from a 45O line are caused by Qa, the flux generated 
by circulating currents. .4t (n-t +)@,I the circulating current reaches a value for which 
a step increase is energetically advantageous. The circulating currents try, but fail to 
keep the AU in the loop at multiples of a flux quantum (because of the non-perfect 
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Figure 4.11: Two-junction parallel array with simmetrical feed. The integration path 
for the analysis is shown by the broken line. 

4.6 Quantum interference in parallel junctions 

4.6.1 General relationships 

Let’s consider now two Josephson junctions connected in parallel through supercon- 
ducting paths, large enough so that the current density is zero inside the links joining 
the two junctions (from “a” to “b” and from “c” to “d”) and therefore (in the Lon- 
don gauge) A = -AJ, = 0; the circuit described here is shown in Figure 4.11. Let 
I,, I,, Iz be respectively, the external current and the currents circulating through 
junction 1 and 2 (14, §5.10]. Let’s choose the London gauge-in which we have seen 
that 00 = 0, inside bulk superconductors (cf. section 2.3.3)-and take the integral 
of V6’ in the clockwise direction, the only surviving contributes are those from the 
two junctions, so 

.f 
V6. dl = (8, - 0d) - (0, - 0b) = 2na, (4.41) 

where the 2na result comes from requiring the wave function to be one-valued every- 
where. Let’s now make use of the gauge invariant phase. defined in section 4.4, we 
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can write (4.41) as 
bz=&+;/A.dl-2nrr. (4.42) 

We can disregard the 2nn because when we take the sine of the expression above. we 
will have sin(z - 2nx) = sinz. Using Stokes’ theorem the above expression can be 
transformed into 

(4.43) 

where @ is the magnetic flux inward through the loop, and Qe dzf h/(2e) is the 
quantum of flux. The total current through the parallel junctions is 

I,=l,+lz=I, sin&+sin El-Ln$ 
1 c I 

, 

where we have supposed to deal with simmetric junctions, 

4.6.2 Self-induced flux neglected 

The analysis of the critical current is greatly simplified if we neglect the fact that 
currents flowing in the loop produce a flux themselves in addition to that of the 
externally applied field, aext. With these assumption, @ becomes an independent 
variable and equation (4.44) can be maximized with respect to 6r, to find the critical 
current of the device, yielding 

Irc(aext) = 21, lcos (2$-j!. (4.45) 

The dependence of the total critical current on the externally applied magnetic flux 
is shown in Figure 4.12. 

Let’s consider how the I-V characteristics is modified by the presence of a magnetic 
field. We assume that the junction is of the type with & = 0 (high conductance). 
When there is sn integer number of flux quanta in the loop, the I-V characteristics is 
the same as the one we saw in section 4.5.1 and it is shown in Figure 4.13. When the 
external flux is aext = (n + i)@c the two supercurrents interefere destructively and 
the I-V characteristics reduces just to the Ohm’s law (because of the strong influence 
of the conductance). 

4.6.3 Symmetrical array with self-induced flux 

The definition of inductance requires the self-induced flux to be 

(4.46) 
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Figure 4.12: Dependence of the critical current for a two-junction parallel array on 
the applied flux where the self-induced flux is neglected. Solid line for symmetrical 
array and broken line for asymmetrical array with Icl = 2Ia. 

Figure 4.13: I-V characteristics for the array described by the solid line in Figure 4.12 
for integer and half-integer multiples of the flux quantum in the loop. 
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Figure 4.15: Dependance of total flux in the loop and the self-induced flux on the 
applied flux for the same array as in Figure 4.14 (LI, = 5&/n). 

phase correlation due to the weak links) and the loop switches when one state requires 
less circulating current than the neighbouring state. 
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Appendix A 

The probability current density 

I would like to show a way to derive the probability continuity equation based on 
the invariance properties of the Lagrsngian density (see for example [2, Chapter 11) 
for an introduction to classical field theory) for the Schrodinger equation. I haven’t 
found this calculation in the books I have read. so I will go through the steps in a 
more detailed way. 

Given the Lagrangian density for the Schradinger equation in an electro-magnetic 
field [8, !310.12]: 

where A is the vector potential and 4 is the scalar potential, so that the fields are 

(A.21 

B=VxA. (A.31 

It is easily shown that (A.l) indeed leads to the Schrijdinger equation [22, pages 499- 
5001 in an electro-magnetic field (1.7), using Euler-Lagrange equations for $J or $ 
(thought ss independent fields). The variation of I: is: 

(A.41 

and finally, using the rule for the differentiation of a product of functions, one finds’: 

6L = EJ&-&(&) -k#+ 
‘From now on the summation over the index i will be implied. a.bi = Cf=, aibi. 
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+& ($&Jh) +$ (E6+) (A.5) 

The term in square brackets is always equal to zero because it is just the sum of the 
two Euler-Lagrange equations for $ and $‘, so if there exists a transformation of the 
fields for which L: is invariant, then a “constant of the motion” is: 

& &6++- ( 
aL 6*’ 

oz. a(z) 1 ( 
+a %slc,+ 

at a* 
E6, 
w ) = 0. 64.6) 

By inspection, it is seen that C. is invariant under the global transformations: 

1 
* 4 e’+h 
Q - ,pxp. (A.71 

So for an infinitesimal transformation (elx = (1 + ix)) we find that: 

6$ = ix* 
67+P = -ix@* 

and substituting the (A.8) in the (A.7) we get: 

w4 

or equivalently (supposing x # 0) 1 

We have thus found the continuity equation for the probability density current J in 
the eiectro-magnetic field by means of Noether’s theorem; the analytical expression 
of J is: 

J=&-[,(:v-~A)$J+Q(-!v-~A)v]. (A.11) 

I would finally like to remember that, despite the similarities between the prob- 
ability current and the electric current density, these two quantities are not reiated 
in any way, in the one particle case. It will turn out that they are very strongly 
connected if we consider a system of a huge number of particles. all described by the 
same wave function. 



Appendix B 

Derivation of the relation 
J, and 8 

between 

In this appendix I will do the calculations that lead to equation (2.5) explicitly, 
however these are not a necessary condition to understand the rest of the paper. I 
have decided to write these calculations here only for completeness and because they 
are left to the reader in [3, chapter 211 too. 

Let’s consider the expression for the electric current density and write it in a 
slightly different way from (2.4): 

J.=$-[$V-qA)$++-qA)# (B.l) 

it is now clear that (B.l) is indeed the average between a complex expression and 
its complex conjugate. so J is a real quantity. This means that we will not have to 
bother about the imaginary part in the cskulation. 

Let’s substitute: 
tj(r, t) Sf me’e(r’L), U3.2) 

in the (B.l) and develop the obtained expressions: 

J, = ~[,-ie(~~-pA)(~e’B)+~~‘e((~C-yA)(~eiB))*] 

= +{&-ie(;O-qA) (J;le”)} 

=G ~~ 
i 

: (i@O + V Cd?)) - A.6 

= ; (hV8 - qA) . 
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and so. finally, we find: 

J,=;(VO-qA)p, (B.3) 

and this is just the expression we have used in Chapter 2. This expression is inde- 
pendent from Maxwell equations, so there must be some new physics, not contained 
in classical electrc+magnetism hidden here. We will see that this is just the case, in 
fact equation (B.3) leads to flux qusntization and the Meissner effect in supercon- 
ductors, however it is not yet obvious why (B.3) should describe the behaviour of a 
superconductor in a magnetic field. 



Appendix C 

The BCS theory ofthe energy gap 

\Ve will first consider a mathematical problem that will give us the tools to cope with 
the mechanism that builds the energy gap between the ground-state and the excited 
states [4, pages 624-6271. 

Consider an unperturbed one-particle system with an energy level spectrum such 
that one of the levels is R-fold degenerate and well separated in energy from the 
others. so that all these R states correspond to the same energy level. Introduce now 
a weak perturbation, that might split up the R states so that they now occupy a 
certain range of energies. We denote the R states associated with the unperturbed 
degenerate level cpr , p2, , rpn. These states satisfy the SchrLkhnger equation 

jloip, = .hi> (C.1) 

we may choose E = 0 so that the equation for the unperturbed system becomes 
l-lop, = 0. 

In the first approximation the new states of the system may be written (following 
degenerate perturbation theory) as a linear combination of the unperturbed states 

$j = 5 Cjiipi. 

I=* 
(C.2) 

To solve this problem. suppose that the $j thus formed are exact solutions of the 
perturbed Schrijdinger equation 

(jl0 + O)Qj = irtij = Fj?+bj, (C.3) 

which can be written as 
2 cjiopi = Ej x cjiq,. (C.4) 
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Multiplying both sides of the (C.5) by p;n and integrating over the volume we find 

CCji(77tlli]i) = fj CCji6, = CjCjm. cc.51 

So we find a set of R simultaneous equations for each j, in the R unknowns cj,. 
These equations have a nontrivial solution only if the determinant of the coefficients 
vanishes, so (dropping the index j) we have: 

(l(fi(1) - c ‘.’ Pl~lR) 
‘. = 0. CC.61 

(RI&l) .: (R,& - c 

The problem is to find the roots c of this determinant. which in general is a hard 
numerical business. Suppose that 

(mjirji) = 1 V’m,i = 1, , R. (C.7) 

We now from determinant theory that: 

and 

so in our case we find: 

cc; = ~(~IOIA, . f ‘& 

(C.8) 

cc.91 

(C.10) 

Let’s now form the linear combination 

*I = $Pi, (C.12) 

this is indeed a solution of the problem, as can be seen substituting the (C.12) in the 

c , +dL& 
so we finally find for the energy 

cl = R. cc.141 4 
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t = Oi( (R- 1) states 

e,=-Rb 1 state 

Figure C.l: Energy eigenvalue spectrum for the perturbed hamiltonian. 

This means that the energy of the other states is ej = 0 for every j # 1 (just because 
the sum of the roots of the determinant must be equal to R). 

If the potential 0 is an attractive interaction the matrix elements will be negative 

(ilO]j) = -6, 

so the energy spectrum will be (see Figure C.l): 

(C.15) 

Cj = 
-R6 ifj = 1 
0 ifj # 1 (C.16) 

Thus we have found the existance of an energy gap in the spectrum of the perturbed 
levels. Even if the interaction 6 may be very weak, R6 may be large if the degeneracy 
is high. 

In the problem just treated. we have been dealing with one-particle states; suppose 
now that we have a system of N electrons, initially wihout mutual interactions. 
The various states @ of the N-particle wave function can be specified by giving the 
occupancy number (between zero and one, because of the Pauli Exclusion principle) 
of the one-electron states. We may label a one-electron state as k r, for example, 
to mean that it has wavevector k and spin up. If we decide to label an N-particle 
state in terms of occupied one-particle states in the case of non-interacting electrons 
(the equivalent of the unperturbed hamiltonian) a state can only be either occupied 
or vacant, so in our case we have. for example 

Q, = kl t; kz t; h 1;. .; h T, (C.17) 

where the subscripts on the k denote specific values of the wavevector according to 
some arbitrary ordering. 
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We now let the electrons interact via a potential 

ti = C ii(r, - r,). 
nm 

Each term of the sum acts to scatter two electrons into two empty electron-states. 
provided they are empty, i.e. one scattering event takes the system from @, to a”. _ 

Can we make the assumption, as we did before, that the matrix elements of U 
are all equal ? No, this is not possible in general.- First of all, we cannot scatter at 
all between states of different total spin because U does not contain spin operators. 
We can also see that some of the matrix elements are positive, while some others 
are negative, in fact suppose that the matrix element for Q, going into Qw z k, T 
; kb T; b 1;. . is positive. then the matrix element for a3 going into a’, c kb T 
; k, T; b 1;. is negative because electrons are fermions. and so. according to the 
Paub exclusion principie, the interchange of the order of two states in a wavefunction 
changes the sign of the wavefunction. 

Actually there is a subspace of the Hilbert space of the N-particle states for which 
all the matrix elements can be allowed to be equal. Suppose to consider oniy those 
states which are occupied by pairs of electron, e.g. such that if k T is occupied then 
also -k 1 is occupied’, then the many-particle states that we consider are of the form 

QA E kl T; -kl 1; kz T; -k2 I;. (C.19) 

These states are closed under the usual operations for Hilbert spaces (i.e. if we form 
linear combinations of paired states we still find paired states) so they indeed form a 
subspace of the problem. 

Within this subspace. it is not unreasonable to assume a potential whose matrix 
elements are all equal, as we exchange two particles at a time, and so the many-body 
wavefunction does not change sign on a pair exchange (behaving just as if the system 
was made of bosom). Then by analogy with the earlier solution (C.16) we obtain 
a spectrum which has a single ground state separated by an energy gap from the 
excited states. Our discussion has neglected completely the kinetic terms, but the 
BCS theory shows that inclusion of the kinetic energy does not destroy the energy 
gap. 

‘We could form pairs in many other ways, for example with parallel spins. but the one we consider 
turns out to be the least energetic. 



Appendix D 

A general analysis of the 
Meissner effect 

Suppose we have a simply connected and connected lump of superconducting material. 
Let’s write again from equation (2.5): 

Js=$(VB-;+, P.1) 

suppose also to be in stationary conditions, so that the charge conservation reads 
V . J, = 0. 

Let’s now make a choice for the gauge very convenient in quasi-static situations 
in superconductivity, the London gauge [14, 93.051: 

V.A = 0 
Al = -AJ,I at the surface. 0.2) 

where A = m*/(q’p). Let’s show that there always exists a vector potential satisfying 
these conditions; suppose that A does not satisfy the (D.2), take another vector 
potential A’ such that 

A’ = A + Vx, (JJ.3) 
where x is any C2 scalar function (this is the ordinary gauge freedom of electro 
magnetism, see [17, §6.5]), and such that A’ satisfies (D.2) 

V.A’ = V.AfV2x = 0 
Al’ = Al + (Vx). n = -AJ,l at the surface. 

that is: 
v=x = -V.A 

(Vx) ti = -(AJ,i + Al) at the surface. 

P.4) 

P.5) 
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which is a Poisson equation with Neumann boundary conditions, so a solution exists 
and it is unique. apart from an arbitrary additive constant [17, §1.9]. 

Taking the divergence of (D.l) we find. in the London gauge: 

v2e = 0. (D.6) 

and for the boundary condition we have 

that is: 

h * ha9 1 
J,.?F~ (VO).d-A4 

h 
P=---~A~, 

m* & 

%,. 
an 

(D.7) 

(D.8) 
and this is. obviously, valid at the surface of the superconductor. The solution for 
this boundary value problem is easily seen to be 0 = const. over the whole volume 
(being connected) and it is unique (we are again dealing with a Laplace equation 
with Neumann boundary conditions) apart from an additive constant. So we see that 
equation (D.l) finally becomes: 

J =-Q’PA=-LA 9 m* A . 

Using the vector potential A and the scalar potential 4, Maxwell equations can 
be written in the form: 

V2d+;(VA) = -; (D.lO) 

- V2A + pocoatz + V(V A) + pm,V = ~QJ. (D.ll) 

imposing the London gauge and remembering that we are dealing with stationary 
conditions (i.e. the fields are constant in time), the second one becomes 

V2A = -fioJ zz ?A = ~2~. 

It can be shown, using only the structure of the Helmoltz equation (D.12) and 
some theorems from potential theory that the maxima of A cannot lie inside the 
superconductor and that the field must be exponentially small for all points that lie 
far distant from the surface, compared with the penetration depth (23, 571. 
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